
Beta: Jurnal Tadris Matematika, 15(2) 2022: 104-117 

DOI 10.20414/betajtm.v15i2.549 

 
Research articles 
 

The construct validity of mathematical reasoning and proof test instrument 

integrated with GeoGebra: Second-order confirmatory factor analysis 
 

Yurizka Melia Sari1, Heri Retnawati2, Shofan Fiangga1  

 

 

Abstrak Instrumen penalaran dan pembuktian matematika merupakan alat untuk menilai 

kemampuan penalaran siswa dalam memecahkan masalah pembuktian. Pentingnya penalaran dan 

pembuktian dalam matematika didokumentasikan dalam keterampilan yang harus dikuasai siswa 

dalam beberapa kurikulum. Akan tetapi, terdapat kesenjangan penilaian penalaran dan pembuktian 

matematis di Indonesia, yaitu belum adanya intrumen yang memenuhi validitas konstruk sehingga 

instrumen yang dikembangkan hanya menegaskan interpretasi guru dengan menitikberatkan pada 

masalah matematika yang mengukur pengetahuan siswa. Oleh karena itu, ada kebutuhan untuk 

menunjukkan validitas konstruk item dalam penilaian penalaran dan pembuktian matematika. Untuk 

memenuhi kebutuhan tersebut, penelitian ini bertujuan mengembangkan dan menentukan validitas 

kontruk instrumen yang dikembangkan. Terdapat empat aspek instrumen penalaran dan pembuktian 

matematika terintegrasi GeoGebra, yaitu CMR (Creative Mathematical Reasoning), IR (Imitative 
Reasoning), FP (Formal Proof), dan EP (Empirical Proof). Data diperoleh dengan melakukan 

pengujian tes terhadap 300 siswa SMA di Jawa Timur, Indonesia. Data dianalisis menggunakan 

analisis faktor konfirmatori orde kedua (CFA) berbantuan perangkat lunak Lisrel 8.80. Hasil 

penelitian menunjukkan bahwa, dari semua item, sebanyak 8 item valid atau unidimensional, dengan 

nilai t > 1,96 dan nilai faktor loading > 0.5. Hal ini menunjukkan bahwa parameter butir soal tersebut 

unidimensi sehingga dapat mengukur komposisi penalaran dan pembuktian matematis. 

 

Kata kunci Penalaran dan pembuktian, Validitas konstruk, Analisis faktor  
 

Abstract Mathematical reasoning and proof instruments assess students' reasoning in solving proof 

problems. The importance of reasoning and proof in mathematics is documented in skills that 

students need to be developed in several curricula. However, there are some issues in the assessment 

of mathematical reasoning and proof in Indonesia. One of them is no instruments that meet construct 

validity. The existing instruments only confirm the teacher's interpretation by focusing on 

mathematical problems that measure students’ knowledge. Therefore, there is a need to determine 

the construct validity of items in assessing mathematical reasoning and proof. For this need, this 

research aims to develop and evaluate the construct validity of the developed instrument. There are 

four aspects of a mathematical reasoning and proof instrument integrated with GeoGebra, namely 

CMR (Creative Mathematical Reasoning), IR (Imitative Reasoning), FP (Formal Proof), and EP 

(Empirical Proof). The data was obtained by conducting tests on 300 high school students in East 

Java, Indonesia. Second-order confirmatory factor analysis (CFA) was used to analyze the data using 

Lisrel 8.80 software. The results showed that the developed eight items are valid or unidimensional, 

with a t-value > 1.96 and a loading factor value > 0.5. This reveals that the parameter of the item is 

unidimensional; hence, it can measure students’ mathematical reasoning and proof. 
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Introduction 

Reasoning and proof are essential components in learning mathematics. With mathematical 

reasoning, students can make conjectures and then compile evidence and manipulate 

mathematical problems and draw conclusions correctly and appropriately (Baylis, 1983; 

Stylianides, 2009; Buchbinder & McCrone, 2022). The importance of reasoning and proof skills 

in mathematics is listed in the abilities students need to master in several school curricula at 

every level of education (National Council of Teachers of Mathematics, 2000, 2009; Stylianides 

& Stylianides, 2017). However, students still have difficulties solving mathematical problems 

related to reasoning and proof (Sari et al., 2020; Ginting et al., 2018). This could be caused by 

the learning and assessment processes in schools that only provide examples and at the end of 

the lesson, they are given practice questions that tend only to memorize and apply formulas 

(Chotimah et al., 2020; Fiangga, 2014). This results in students’ inability to solve problems 

related to reasoning and proof, such as understanding examples, counterexamples, and special 

cases (Sevimli, 2018; Stylianides, 2019). It is acknowledged that reasoning and proof assessment 

should give information about students' capacity to engage with mathematical processes and 

evaluate topic knowledge, such as justification and proof tasks (Maoto et al, 2018; Thompson, 

2012). This means that there is a gap between theory and practice in assessing mathematics 

learning, especially the use of routine problems in assessing students' knowledge. 

In fact, Indonesian students still have low reasoning abilities indicated by the results of the 

Program for International Student Assessment (PISA). The Organization for Economic 

Cooperation and Development (OECD) (OECD, 2019) defines mathematical literacy as an 

individual's capacity to formulate, use and interpret mathematics in various contexts, including 

mathematical reasoning. PISA divides mathematics proficiency into six levels. The level is 

ordered according to the scores achieved by countries on tests administered by PISA. Students 

are said to be capable of reasoning if their scores are levels 3-6. According to PISA results, 

Indonesia ranked 74th in 2018, or 6th place from the bottom. Indonesian students were ranked 

73rd in mathematics literacy with 379 points (OECD, 2019). This means that Indonesian 

students have inadequate reasoning skills. At this level, students are only able to answer 

questions belonging to familiar contexts where all relevant information is presented and the 

questions are clearly defined. 

In addition, many high school students have difficulties constructing and understanding 

evidence. Fu et al. (2022) show that students do not understand the meaning or purpose of proof, 

cannot distinguish proven or unproven empirical examples, lack knowledge of concepts, 

definitions, and notations and are not familiar with proof strategies. It includes how to start 

proving and a metacognitive strategy to observe their progress while doing the proof. Reiss et 

al. (2008) reveal that many students face severe difficulties in consistent reasoning and 

argumentation, especially in a mathematical proof. However, it is well captured that students at 

all levels have difficulties with proofs (Hemmi et al., 2013; Noto et al., 2019), especially in 

understanding the role of examples, counterexamples, and specific cases (Harel & Sowder, 2007; 

Doruk, 2019; Sevimli, 2018). Students are expected to develop reasoning by constructing new 

ideas so that mathematical problems can be solved with new answers that most students do not 

commonly use.  

The development of students’ mathematical reasoning and proof in schools requires related 

instruments to examine the skills. Some studies on the topic have also been carried out by Seah 

and Horne (2020), which focused on the geometric reasoning test item. Mumu and Tanujaya 
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(2019) developed a test instrument to measure reasoning skills from mathematics routine and 

non-routine tasks. Saeedullah  (2021) also developed an instrument to measure mathematical 

reasoning in senior high school using five constructs of mathematical reasoning, such as 

mathematical inductive reasoning, deductive reasoning, generalization, adaptive reasoning, and 

problem-solving. In recent years, research on the assessment of mathematical reasoning and 

proof has been more on developing instruments that focus on revealing reasoning abilities, 

especially for mathematics students or teachers (Stylianides & Stylianides, 2009; Akkurt & 

Durmus, 2022; Sari, 2017). However, there is yet an instrument that reveals both of reasoning 

and proof ability. This can be said that there is no standardized instrument that can be used as a 

reference for reasoning and proof test instrument. Due to the lack of standardized references, 

data obtained from test scores should be analyzed by Item Response Theory (IRT) in order to 

obtain more accurate data information. In fact, Item response theory (IRT) is concerned with 

accurate test scoring and the development of test items better than Classical Test Theory (CTT) 

(An & Yung, 2014). To address this, research on a test that can effectively explain students' 

reasoning and proof with a valid instrument based on analysis with IRT and be utilized in 

evaluating students' reasoning and proof based on norms is required. There is also a need for 

research on mathematical reasoning and proof assessment that can be used in Indonesian high 

schools.  

 

The Framework of Reasoning and Proof 

Reasoning schemes  

One way to test students' mathematical reasoning skills is to understand the arguments 

students use to draw a conclusion (Fischer et al., 2020; Hidayat & Prabawanto, 2018). The 

arguments students generated stem from their choices to employ strategies in solving a given 

mathematics problem or task (Lithner, 2008; Sumpter, 2013). It allows teachers and educational 

practitioners to identify their students' reasoning structures. This information can be used to 

enhance teaching guidelines and mathematics learning assessments. 

There are different views about the construct of reasoning. Haylock and Thangata (2007) 

define two constructs of reasoning, namely inductive reasoning and deductive reasoning. Lithner 

(2008) developed the construct of students' mathematical reasoning based on the results of 

students' conclusion-drawing arguments, namely creative mathematical reasoning and imitative 

mathematical reasoning. Creative mathematical reasoning (CMR) needs to meet the conditions 

of novelty, reasonable or acceptable (plausibility) and based on mathematical knowledge. In 

comparison, imitative reasoning (IR) has a relationship with memory reasoning, where students 

choose strategies by using answers without any consideration and algorithmic reasoning, where 

students use strategies with a set of mathematical rules in solving given problems.  

In this study, we limited the constructs of mathematical reasoning to creative mathematical 

reasoning (CMR) and imitative reasoning (IR) in developing an instrument model for assessing 

the reasoning ability of high school students. The description for each reasoning construct used 

is summarized in Table 1. 

 

Proof schemes  

Mathematics education literature suggests various theoretical frameworks relating to the 

proof studied in school mathematics (Balacheff, 1991; Stylianides & Stylianides, 2008; Harel & 
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Showder., 2007). Mejia-Ramos and Inglis (2009) found that in a sample of 131 articles related 

to the theoretical framework of proof and argumentation in mathematics, only three articles 

focused on students’ comprehension of given proofs. These findings suggest that more 

sophisticated ways of assessing students’ comprehension of proof are needed. In regard to 

teaching and learning, teachers' understanding of constructs and proof schemes, especially in 

school mathematics, is essential in analyzing students' knowledge to prove a mathematical 

statement (Dickerson & Doerr, 2014; Blanton & Stylianou, 2014). 

 Table 1. Reasoning construct and its indicator 

Reasoning construct Type Indicator 

CMR (Creative 

Mathematical 

Reasoning) 

 ● Novelty: Students recreate new reasoning 

sequences that are created or that are forgotten. 

● Plausible: There are arguments in favour of 

strategy selection and strategy implementation 

that motivate why the conclusions are valid or 

reasonable. 

● Mathematical foundation: The argument is part 

of the intrinsic mathematical nature of the 

components involved in reasoning. 
IR (Imitative 

Reasoning) 

 

MR 

(Memorized 

Reasoning) 

● Strategy selection is based on obtaining 

complete answers. 

● Implementation of the strategy will be done 
only in the written form contained in the 

question. 
 AR 

(Algorithmic 

Reasoning) 

● The choice of a strategy used is to remember 

the solution algorithm. Prediction arguments 

can be of various types but are not required to 

create a new solution. 

● Solving strategies are partly used because they 

are simple for pupils to understand. After all, 

the only thing that can go wrong in the 

calculation is negligence. 

 

NCTM (2000) outlines four proof constructions that need be developed in high schools, 

including direct proof, indirect proof, proof by example, and proof by mathematical induction. 

Stylianides and Stylianides (2008) suggest that two necessary logical inference rules can be 

considered as constructs of deductive proof, namely modus ponens (MP) and modus tollens 

(MT). Ponen's mode is the basis of direct proof, while Tollen's mode is the basis of indirect proof 

(including proof by contradiction and proof of contraposition). 

Experts have various stances about the construct of proof in school mathematics. For 

example, Gutierrez, Pegg, and Lawrie (2004) only define two proof constructs in the context of 

school mathematics: empirical and deductive. In contrast, Shpiro (2014) created a proof scheme 

based on students' responses to familiar and unfamiliar mathematical content in his research. 

The proof scheme consists of deductive proof and particular proof. The first is divided into 

general proof, where the statement is proven by justifying each step. The latter shows some 

statement or justification can explain the truth of a statement.  

Based on the preceding descriptions about constructs in proof in school mathematics, the 

scheme of proof developed by students' mindsets is essential to be analyzed so that teachers can 

develop problems that follow the schemes of students. As a result, it can give rise to another 
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mathematical mindset. In addition, the evidentiary constructs used in this study are formal 

deductive and empirical proof. The descriptions of the proof construct used in this study are 

presented in Table 2. 

 Table 2. The construct of mathematical proof and its technique 

Proof construct Proof’s technique 

Formal Deductive Transformative proof: mental operations that result 

in the transformation of the initial problem into 

another form of a problem. 

Structural proof: a proof that is a logical deduction 

from data, axioms, definitions, and theorems. 

 

Empirical Proof 

Perceptual proof: using images and perception of 

visual objects. 

Intellectual proof: proof based on empirical 

observation of the example, but the proof uses more 

abstract properties from the example. 

 

 

The use of technology for students’ assessment 

Technology is becoming increasingly important in our personal and professional life. It is 

also very significant in schools, particularly in mathematics instruction and assessment. To reach 

their greatest potential in education, technologies need be built with the characteristics of the 

intended students in mind. Researchers have also decided that technological literacy is a vital 

teaching skill since it allows pupils to comprehend, construct, and explore new problem-solving 

strategies (Bray & Tangney, 2017; Mainali & Key, 2012). Thus, the advantage of seamless 

technology integration with learning is that it broadens students' mental processing power to a 

new domain of knowledge representation via modeling, simulation, and visualization (Ziatdinov 

& Valles, 2022). Another crucial factor to consider is students’ assessment. Technology has also 

changed the way students are assessed. Using computers as evaluation tools dates back to the 

1960s (Green, 1964). There was an observation about a shift from behaviourism to 

constructivism throughout time (Karadag & McDougall, 2011). Hence, there was a movement 

from teacher-centered learning toward learner-centered and personalized learning. As a result, 

the need for adaptive evaluation is becoming more evident, especially in the online world. 

GeoGebra, a web-based instructional tool, has been shown to play an important role in 

mathematics teaching and learning (Hohenwarter et al, 2008; Mthethwa et al, 2020). 

Furthermore, GeoGebra's capacity to integrate algebraic and geometric principles makes it ideal 

for discovering mathematical facts and relations and developing students' thinking and proof 

skills (Albano & Dello, 2019; Lepmann & Albre, 2008).  Millions of users are already 

accustomed to the solid interface of GeoGebra, which has a wide range of features. In addition, 

GeoGebra can be used as an assessment tool by state-the-art theorem provers and also include 

characteristics that are challenging to alter, for example, the precise way to introduce the 

conjectures to be proved or the sort of output results (Botana et al., 2015). In this study, we 

conduct an assessment to examine students' reasoning and proof skills using Geogebra. Since 

the activities were carried out in Geogebra, students might discover or write their justification 

using the application.  
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Methods  

This study was a part of a dissertation project referring to design and development (D&D) 

research comprising three main stages: requirements assessment, design, and development and 

implementation. This article reports the development of the instrument in the third stage, which 

mainly focuses on construct validity. This study used a quantitative approach and the 

Confirmatory Factor Analysis (CFA). Data gathered using a quantitative technique, in the form 

of numbers, is statistically processed, and the results are explained. CFA aims to demonstrate 

that the model created is consistent with the theory developed by experts and field data. The 

expected final product is a reasoning and proof assessment instrument integrated with GeoGebra 

with high instrument quality. 

 

Participants  

This research was conducted in East Java, involving 330 high school students. The schools 

involved in the development of the assessment instrument adjusted to the number of test 

participants used in the development of this assessment instrument. There is a rule of thumb for 

Structural Equation Modeling (SEM), which suggests the number of research samples is N > 

200 (Lacobucci, 2010). Another standpoint is that the number of research samples is 5-20 times 

the number of parameters used (Kline, 2005). Therefore, the number of students involved in this 

trial was 300 students. The number of observed variables or items determined the sample size in 

the CFA analysis. For the sample size, it is recommended to use the estimated Maximum 

Likelihood (ML) at 100-200 (Hair et al., 2006). 

 

The instrument 

The data for this study was gathered using a questionnaire and a test instrument. The 

questionnaire was utilized to collect data on the experts' judgments on the developed instrument 

called Mathematical Reasoning and Proof Testing Tool for Project Improvement. Based on 

expert comments or ratings quantitatively, the statistical approach is used to measure the extent 

of instrument validity. In this research, we calculated the index following the Aiken model 

(1980, 1985) widely used in validating instrument items. According to Aiken Table (Aiken, 

1985), the content validity index (V) required of the item is significant if above the cut-off value 

of 0.70 (V>0.7). The test instrument has fulfilled good criteria of content validity with Aiken 

indexes of 0.92. It was then used to collect data on students' mathematical reasoning and proof 

as empirical evidence to determine the instrument quality used in Indonesian schools. The 

instrument was made up of 8 items presented in Figure 1. 

Figure 2 is one example of reasoning and proof assessment, specifically on creative 

mathematical reasoning. In this case, students are asked to determine the finish location of the 

race tournament from three different city locations. They could freely use GeoGebra to find the 

best location by using the concept of triangle or trigonometry. This integrated assessment test 

with GeoGebra could explore student creativity to find their best strategy based on their creative 

reasoning using GeoGebra tools, such as adding a point, drawing a line, dragging their sketch, 

and so on. 
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Figure 1. The model of second-order confirmatory factor analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The excerpt of reasoning and proof test instrument integrated with GeoGebra 

 

Data analysis 

Data analysis to examine the construct validity of the Mathematical Reasoning and Proof 

Test has two dimensions: Reasoning (R) and Proof (P), each with its own indicator, representing 

R and P. CFA was used to analyze the data. Construct validity analysis was conducted to 

determine whether the measurement results revealed the ability to be measured using factor 

loading data obtained from CFA (Brown & Moore, 2012). CFA was used to examine the 

instrument's validity based on the empirical data obtained (Brown & Moore, 2012). The criteria 

used to decide whether the model fits the data (valid) is based on the significance value (p-value) 

of Chi-Square (2) > 0.05 and Root Mean Square Error of Approximation (RMSEA) < 0.5 

(Schumacker & Lomax, 2004). 

The use of CFA is due to its ability to determine to construct discriminant and convergent 

validity, which were adjusted to the theory of measurement error. It is more comprehensive than 

the correlation analysis framework or multiple regression, which has the assumption that the 

variables involved are free from measurement errors (Harrington, 2009). In addition, CFA 

assumes that the variables that participate in the analysis have measurement errors (Brown, 

2015). 

 

CMR 

Reasoning 
IR 

Reasoning 

Item 1 

Item 2 

Item 3 

Item 4 

FP Item 5 

Item 6 
EP 

Item 7 

Item 8 

Proof  

The figure illustrates the downtown 

locations of 3 neighbouring cities. The 

cities plan to hold races across the 

meadows around the city. Participants 

from each city must start from their 

respective city centres (The yellow 

sign). The finish point is somewhere 

around the meadow. Can you help 

determine the exact finish point for the 

race. Explain your reasons? 
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Two forms of CFA analysis can be used to determine validity, namely first-order and 

second-order CFA (Marsh et al., 2014) assisted by LISREL 8 software. In this research, second-

order confirmatory factor analysis was applied. The second-order CFA is a two-levels 

measurement model. In the second CFA, the indicator variables cannot directly measure the 

latent variables. Therefore, some indicators cannot be measured directly, and more indicators 

are needed. 

 

 
Figure 3. The model of second-order CFA 

 

The first level of analysis is administered from the construct of latent aspects to the 

indicators, and the second level is carried out from the latent construct to the aspect construct 

(Jöreskog & Sörbom, 2006). The construct validity shows that the tested instruments suit the 

theoretical concept (Tavakol & Wetzel, 2020). It provides an overview of how perfect results 

can be achieved using theory-based measurement (Clark & Watson, 2019). In this research, the 

construct validity test of the second-order CFA was conducted by observing the factor loading 

value of (>0.5) and t-value of (>1.96). Hair et al. (2006) set 0.5 as the minimum factor loading 

value. Meanwhile, the construct reliability is considered good if the Construct Reliability (CR) 

equals or is greater than 0.70 and the variance extracted value equals or is greater than 0.50. The 

reliability is fulfilled if the construct reliability value shows > 0.70 (Hair et al., 2010).  

 

Findings and Discussion 

Results of the CFA analysis in this study show that all items of each latent variable, such as 

CMR (Creative Mathematical Reasoning), IR (Imitative Reasoning), FP (Formal Proof), and EP 

(Empirical Proof), measure the components of mathematical reasoning and proof. From each 

item constructed, it was intended to prove that each item measures a component of mathematical 

reasoning and proof. Dimensions follow a factor model and each dimension's item also has a 

large impact. 

The data analysis resulted in the RMSEA (Root Mean Square Error of Approximation) 

value is 0.035, the chi-square is 20.53 with a p-value of 0.153, GFI is 0.98, and AGFI is 0.96. 

These indicate that the model fit has been well fulfilled by using the second-order CFA. Previous 

studies (Savalei, 2017; Xia & Yang, 2019) examined the impact of estimation methods on the 

SEM fit index. In particular, recent work by Xia and Yang (2019) has systematically tested root 

mean square error approximation  (RMSEA; Steiger, 1990) and comparative fit index (CFI; 

Bentler, 1990) estimation methods. Using simulations and empirical examples, these authors 
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yield smaller RMSEAs and larger CFIs than those obtained with ML, suggesting that the model 

fits better. The complete result of the model fit analysis is shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The fit model of second-order confirmatory factor analysis 

 

The results of the second-order CFA for the t-value and SLF (Standardized Loading Factor) 

and the calculation of the Alpha reliability coefficient in the first trial are presented in Table 3. 

Table 3. The result of second-order CFA for t-value and SLF 

Item Aspect Indicator 

Second-order CFA 

Validity 
Construct 

reliability t-value description SLF Error 

1 R CMR 9,167 Significance 0,69 0,079 Valid 0,892 

2 10,182 Significance 0,68 0,06 Valid 

3 IR 8,038 Significance 0,79 0,04 Valid 

4 12,722 Significance 0,76 0,08 Valid 

5 P Formal 
Proof 

11,434 Significance 0,3 0,128 Valid 0,749 

6 4,659 Significance 0,49 0,125 Valid 

7 Empirical 

Proof 

10,981 Significance 0,57 0,085 Valid 

8 9,093 Significance 0,78 0,086 Valid 

 

Based on Table 3, in terms of the t-value test, all test items are significant in supporting the 

reasoning and mathematical proof test constructs, with the highest support by item 5 and the 

lowest by item 6. A construct has good reliability if the value of Construct Reliability (CR) is 

0.70 (Rosli et al., 2021; Hair et al., 2010). It means that the constructs contained in the test items 

could measure the ability of reasoning and mathematical proof. Good test reliability also shows 

that the measurement results obtained from this test are consistent. 
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Construct validity can be defined as an effort to measure how far the items can measure 

what they want to measure following the previously defined concept. The criterion is valid in 

the CFA analysis or can be said to be valid if the t-value > 1.96 has a loading factor > 0.5 for a 

sample size of more than 300 (Hair et al., 2010). Therefore, all items on the current study fulfil 

construct validity. 

In addition to fulfilling good construct validity, it also indicates fulfillment of 

unidimensionality in the reasoning and proof test. One of the most commonly used psychometric 

models to measure a single construct is the Unidimensional Item Response Theory (UIRT). It 

recognizes the potential presence of multiple dimensions in a test (Strachan et al., 2022). It also 

means that the developed reasoning and proof test integrated with GeoGebra consists of 2 subsets 

of questions. Each of these questions measures one ability: reasoning or proof ability. In 

addition, the fulfillment of unidimensionality can be shown visually on the Eigenvalue graph 

with factor analysis using SPSS version 20, as shown in Figure_5. It shows the eigenvalue of 

one factor, which is dominant compared to the Eigenvalue of the other factors. It means that the 

unidimensional assumption on the test is said to have been fulfilled. 

 

 
Figure 5. The graph of Eigenvalue on mathematical reasoning and proof test 

 

The developed test instrument's constructs include two frameworks of reasoning 

competence and two frameworks of proof; the first includes creative mathematical reasoning 

(CMR) and imitative reasoning (IR). Meanwhile, the latter is comprised of formal proof (FP) 

and empirical proof (EP). As a result, we discovered that the developed test instrument met the 

construct reliability criteria (Table 3). Construct reliability measures how well variables 

underlying constructs served in structural equation modeling (Zinbarg et al., 2005). Construct 

reliability could be determined after construct validity has been established using confirmatory 

factor analysis. Construct reliability is determined using the factor loading analysis (Geldhof et 

al., 2014). According to Gefen et al (2000), a construct reliability coefficient greater than 0.70 

is appropriate. A high coefficient denotes a high level of internal consistency. It would only be 

conceivable if every variable measured the same latent construct consistently.  

 

Conclusion  

The second-order CFA on the reasoning and proof instrument integrated with GeoGebra 

shows that the reasoning and proof scale is valid and reliable. Therefore, the instrument could 
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be used to measure reasoning and proof ability among high school students. The evidence of 

construct validity of the developed instrument was based on four latent variables, namely CMR 

(Creative Mathematical Reasoning), IR (Imitative Reasoning), FP (Formal Proof), and EP 

(Empirical Proof). The instrument comprises eight items from the CMR, IR, FP and EP. The 

loading factor has a significant effect as unidimensional on the latent variable derived from the 

CFA analysis. It can be seen from the t-value > 1.96 and the loading factor value > 0.5. However, 

the limited number of items and the tight control of time allow the scores obtained by the 

respondents to be influential. For further research, this instrument might be utilized to describe 

the profile of high school students in solving mathematical reasoning and proof tests. 
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